Covalent binding and tissue distribution/retention assessment of drugs associated with idiosyncratic drug toxicity.
نویسندگان
چکیده
Bioactivation of a drug to a reactive metabolite and its covalent binding to cellular macromolecules is believed to be involved in clinical adverse events, including idiosyncratic drug toxicities (IDTs). For the interpretation of the covalent binding data in terms of risk assessment, the in vitro and in vivo covalent binding data of a variety of drugs associated with IDTs or not were determined. Most of the "problematic" drugs, including "withdrawn" and "warning" drugs, exhibit higher human liver microsome (HLM) in vitro covalent binding yields than the "safe" drugs. Although some of the problematic drugs that are known to undergo bioactivation other than cytochrome P450-mediated oxidation exhibited only trace levels of HLM covalent binding like safe drugs, a rat in vivo covalent binding study could assess the bioactivation of such drugs. Furthermore, the tissue distribution/retention of the drugs was also examined by rat autoradiography (ARG). The residual radioactivity in the liver observed at 72 or 168 h postdose was found to be well correlated with the rat in vivo covalent binding to liver proteins; thus, the in vivo covalent binding yields of the drugs could be extrapolated from the retention profiles observed by means of ARG. Long-term retention of radioactivity in the bone marrow was observed with some drugs associated with severe agranulocytosis, suggesting a spatial relationship between the toxicity profile and drug distribution/retention. Taken together, the covalent binding and tissue distribution/retention data of the various marketed drugs obtained in the present study should be quite informative for the interpretation of data in terms of risk assessment.
منابع مشابه
A zone classification system for risk assessment of idiosyncratic drug toxicity using daily dose and covalent binding.
The risk of idiosyncratic drug toxicity (IDT) is of great concern to the pharmaceutical industry. Current hypotheses based on retrospective studies suggest that the occurrence of IDT is related to covalent binding and daily dose. We determined the covalent binding of 42 radiolabeled drugs in three test systems (human liver microsomes and hepatocytes in vitro and rat liver in vivo) to assess the...
متن کاملQuantitative assessment of reactive metabolite formation using 35S-labeled glutathione.
The metabolic bioactivation of a drug to a reactive metabolite (RM) and its covalent binding to cellular macromolecules is believed to be involved in clinical adverse events, including idiosyncratic drug toxicities. Therefore, it is important to assess the potential of drug candidates to generate RMs and form drug-protein covalent adducts during lead optimization processes. In this study, the R...
متن کاملBioactivation of Trimethoprim to Protein-Reactive Metabolites in Human Liver Microsomes.
The formation of drug-protein adducts via metabolic activation and covalent binding may stimulate an immune response or may result in direct cell toxicity. Protein covalent binding is a potentially pivotal step in the development of idiosyncratic adverse drug reactions (IADRs). Trimethoprim (TMP)-sulfamethoxazole (SMX) is a combination antibiotic that commonly causes IADRs. Recent data suggest ...
متن کاملMarkers of electrophilic stress caused by chemically reactive metabolites in human hepatocytes.
The metabolic activation of a drug to an electrophilic reactive metabolite and its covalent binding to cellular macromolecules is considered to be involved in the occurrence of idiosyncratic drug toxicity (IDT). As a cellular defense system against oxidative and electrophilic stress, phase II enzymes are known to be induced through a Kelch-like ECH-associated protein 1/nuclear factor E2-related...
متن کاملEvaluation of the potential for drug-induced liver injury based on in vitro covalent binding to human liver proteins.
Prediction of idiosyncratic drug-induced liver injury (DILI) is difficult, and the underlying mechanisms are not fully understood. However, many drugs causing DILI are considered to form reactive metabolites and covalently bind to cellular macromolecules in the liver. The objective of this study was to clarify whether the risk of idiosyncratic DILI can be estimated by comparing in vitro covalen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 36 9 شماره
صفحات -
تاریخ انتشار 2008